По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес: peg@nt-rt.ru | http://www.pge.nt-rt.ru

Измерительные комплексы

ки-стг

Измерительно-вычислительные комплексы КИ-СТГ предназначены для измерения объема и объемного расхода природного газа в рабочих условиях и автоматического приведения измеренного объема газа к стандартным условиям в зависимости от давления, температуры и коэффициента сжимаемости. Комплексы могут применяться при автоматизированном контроле и учете потребления газа на газораспределительных станциях, газораспределительных пунктах, котельных, промышленных предприятиях и других узлах учета газа.

Условные обозначения

КИ-СТГ-Б-80/250-16:

- Б Тип корректора (Б корректор БК; С корректор SEVC-D (Corus); Г вычислитель «ГиперФлоу-3Пм»)
- 80 Диаметр условного прохода, мм
- 250 Максимальный измеряемый объемный расход при рабочих условиях, м³/ч
- 16 Верхний предел диапазона измерения давления, кгс/см² (при использовании датчика абсолютного давления добавляется A)

Вид климатического исполнения комплексов УХЛ, категория размещения 3 по ГОСТ 15150-69.

Комплексы КИ-СТГ выполнены для установки в трубопроводе с диаметром условного прохода: $Д_{\rm y}$ 50 мм, $J_{\rm y}$ 80 мм, $J_{\rm y}$ 100 мм, $J_{\rm y}$ 150 мм.

По защищенности от проникновения пыли и воды комплексы соответствует группе: IP50 по ГОСТ 14254 — для комплекса КИ-СТГ-Б, IP55 по ГОСТ 14254 — для комплекса КИ-СТГ-С, IP54 по ГОСТ 14254-96 — для комплекса КИ-СТГ-Г.

Электропитание комплексов осуществляется:

- для комплекса КИ-СТГ-Б от встроенного источника питания литиевых батарей максимальным напряжением 6,5 В со сроком непрерывной работы не менее 5 лет или от внешнего источника питания со встроенным искробезопасным барьером;
- для комплекса КИ-СТГ-С от встроенного источника питания литиевых батарей 3,6 В со сроком непрерывной работы не менее 5 лет или от внешнего источника питания со встроенным искробезопасным барьером;
- для комплекса КИ-СТГ-Г от встроенного источника питания БП-012 КРАУ5.087.012, напряжение не более 3,7 В, со сроком непрерывной работы не менее 3 лет или от внешнего источника питания со встроенным искробезопасным барьером.

Комплекс КИ-СТГ обеспечивает выполнение следующих процедур:

- измеряет объем газа в рабочих условиях, давление и температуру и приводит измеренный объем к стандартным условиям согласно измеренным значениям давления и температуры и вычисленному значению коэффициента сжимаемости;
- обеспечивает архивирование параметров потока газа в памяти корректора;
- обеспечивает защиту введенной базы настройки корректора и архивной информации, хранящейся

в его памяти, от постороннего вмешательства. Защита обеспечивается путем пломбирования корпуса корректора с помощью навесных пломб, ограничивающих доступ к элементу разрешения настройки, установкой паролей.

Технические характеристики

Измеряемая среда	природный газ по ГОСТ 5542-87			
Максимальное рабочее давление, МПа	1,6			
Максимальный расход, Q _{max} , м ³ /ч	100–1600			
Пределы допускаемой основной относительной погрешности, %:				
от Q_{min} до $0,2$ Q_{max}	±2,5			
от 0,2 Q_{max} до Q_{max}	±1,5			
Диапазон измеряемых расходов, м ³ /ч	10–25 000			
Диапазон температур, °C:				
окружающая среда	от –30 до +50			
измеряемая среда	от –30 до +50			
Количество газа, соответствующее 1 импульсу магнитного датчика, м³/имп	0,1; 1,0			
Степень защиты от пыли и воды:				
КИ-СТГ-Б	IP50 по ГОСТ 14254-96			
КИ-СТГ-С	IP55 по ГОСТ 14254-96			
КИ-СТГ-Г	IP54 πο ГОСТ 14254-96			
Межповерочный интервал, лет:				
КИ-СТГ-Б, КИ-СТГ-Г	3			
КИ-СТГ-С	5			

Устройство и принцип работы

Конструктивно комплекс КИ-СТГ состоит из счетчика газа и корректора, имеющих нормированные метрологические характеристики.

Счетчик газа турбинный состоит из двух блоков:

- проточного блока;
- отсчетного устройства.

Проточный блок включает в себя: корпус, струевыпрямитель, измерительную вставку, магнитную муфту. Проточный блок счетчика (корпус) имеет погружные карманы с установочными местами с резьбой $G^{1/4}$ -В под термопреобразователь и датчик давления.

Отсчетное устройство роликового типа, механическое, восьмиразрядное, с магнитным датчиком импульсов, соединенным с контактами разъема для подключения к корректору.

Измерительно-вычислительный блок коррекции объема газа БК состоит из следующих составных частей:

- термопреобразователь сопротивления;
- датчик абсолютного или избыточного давления различных модификаций в зависимости от верхнего предела диапазона измерения давления;
- блок коррекции с дисплеем и панелью управления.

Электронный корректор объема газа SEVC-D (Corus) состоит из следующих составных частей:

- термопреобразователь сопротивления;
- датчик абсолютного давления различных модификаций в зависимости от верхнего предела диапазона измерения давления;
- блок корректора с дисплеем и панелью управления.

Датчик комплексный с вычислителем расхода «ГиперФлоу-3Пм» состоит из следующих составных частей:

- термопреобразователь сопротивления;
- датчик абсолютного или избыточного давления различных модификаций в зависимости от верхнего предела диапазона измерения давления;
- измерительная часть «ГиперФлоу-3Пм» с дисплеем и магнитным ключом;
- коробка распределительная КР-001;
- переносной терминал ПТ-003.

Термопреобразователь сопротивления, установленный в потоке газа, преобразует температуру газа в пропорциональный сигнал.

Датчик давления, подсоединенный к потоку газа, преобразует измеренное значение давления газа в пропорциональный сигнал.

Сигналы с датчика давления, термопреобразователя и счетчика газа передаются к вычислителю.

Коробка распределительная обеспечивает присоединение измерительной части «Гипер Φ лоу- 3Π м» к внешним устройствам.

Переносной терминал по инфракрасному каналу позволяет настраивать (конфигурировать) измерительную часть «Гипер Φ лоу- 3Π м».

Вентильный блок, установленный перед датчиком давления, позволяет:

• отключать датчик давления вентилем «2»;

• проводить проверку датчика давления без его демонтажа.

Принцип действия счетчика основан на использовании энергии потока газа для вращения первичного преобразователя расхода счетчика — турбины. Частота вращения турбины пропорциональна расходу газа. Вращение турбины через магнитную муфту передается на отсчетное устройство счетчика, которое суммирует число оборотов турбины и показывает количество прошедшего через счетчик газа в м³ в рабочих условиях.

В отсчетном устройстве счетчика имеется магнитный датчик импульсов, который обеспечивает дистанционную передачу сигналов на регистрирующие электронные устройства, которые могут быть подключены к контактам разъема счетчика, количество импульсов пропорционально объему газа, прошедшему через счетчик в ${\rm M}^3$ в рабочих условиях.

При появлении мощного внешнего магнитного поля контакты одного из герконов размыкаются, что может быть использовано для сигнализации об аварии или несанкционированном вмешательстве.

Измерительно-вычислительный блок коррекции объема газа БК, корректор объема газа SEVC-D (Corus) и датчик комплексный с вычислителем расхода «ГиперФлоу-ЗПм» представляют собой самостоятельные микропроцессорные устройства, предназначенные для преобразования по определенному алгоритму сигналов, поступающих от счетчика газа, датчика давления и термопреобразователя, дальнейшего измерения и регистрации этих параметров. Корректор вычисляет объем газа, приведенный к стандартным условиям.

Обозначение комплекса	Диаметр условного прохода, Ду, мм	Габаритные размеры, мм	Масса, кг
КИ-СТГ-Б-50	50	230 × 275 × 405	7,8
КИ-СТГ-С-50	50	210 × 255 × 450	8,2
КИ-СТГ-Г-50 блок счетчика	50	150 × 255 × 310	5,2
«ГиперФлоу-ЗПм»		265 × 200 × 370	4,5
КИ-СТГ-Б-80	80	285 × 290 × 425	11,2
КИ-СТГ-С-80	80	270 × 290 × 470	11,7
КИ-СТГ-Г-80 блок счетчика	80	240 × 290 × 320	8,7
«ГиперФлоу-ЗПм»		265 × 200 × 370	4,5
КИ-СТГ-Б-100	100	315 × 310 × 460	24,5
КИ-СТГ-С-100	100	300 × 310 × 505	25
КИ-СТГ-Г-100 блок счетчика	100	300 × 310 × 335	22
«ГиперФлоу-ЗПм»		265 × 200 × 370	4,5
КИ-СТГ-Б-150	150	450 × 375 × 500	35,5
КИ-СТГ-С-150	150	450 × 375 × 545	36

КИ-СТГ-Г-150 блок счетчика	150	450 × 375 × 350	32
«ГиперФлоу-ЗПм»		265 × 200 × 370	4,5

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес: peg@nt-rt.ru | http://www.pge.nt-rt.ru